
Gehlod,1(10): December, 2012] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [679]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

 Study of Several Fault Tolerance Methodologies in Distributed Environment
Lalit Gehlod*

* Department of Computer Engineering, Institute of Engineering and Technology, Indore

Abstract
Fault tolerance is the property that enables a system to continue operating properly in the event of the failure of (or

one or more faults within) some of its components. If its operating quality decreases at all, the decrease is

proportional to the severity of the failure, as compared to a naively designed system in which even a small failure

can cause total breakdown. Fault tolerance is particularly sought after in high-availability or life-critical systems.

This paper provides a learning of fault tolerance techniques in distributed systems, particularly replication and

check-pointing. We have also suggested fault tolerance by replicated chechpointing in which both the tolerance

techniques are combined. This work will help new scholars and students a good quality reference.

Keywords:Fault-tolerance, distributed system, Distributed Computing, Replication, Redundancy, High availability.

 Introduction
The increased usage of systems and our increasing

dependence on them have led to a need for highly

dependable machine. There are so many fields where

system performance life critical tasks. Some

examples of these are airways flight control systems,

hospital patient monitoring systems etc. Other

application areas include banks and retail markets. In

these systems, failure of system may direct to

disaster, money loss, or even loss of life. In such

cases, highly faithful machines are needed.

reliability means that our computer system can be

trusted to perform the examine for which it has been

intended [7]. reliability can be decomposed into

dependability, accessibility, protection and safety

measures. Where, reliability deals with continuity of

examination, availability with readiness of procedure,

safety with prevention of terrible penalty on the

situation, and defence with avoidance of illegal

admission and/or management of information.

A computer system failure happens when the system

behaviour is not reliable with its condition [13]. A

system consists of several machinery, more the

number of components; the more are the belongings

that could be damaged.

Since problems are caused by faults, a direct

approach to recover the consistency of a system is to

try to avoid faults from taking place into a system.

This approach is called fault avoidance. The other

approach is fault tolerance. The goal is to provide

service regardless of the occurrence of faults in the

computer system.

The fault avoidance methods [14] focus on

methodologies for designing, software testing and

validation; whereas fault tolerant methods focus on

how to handle failures can be masked. Here we will

be discussing techniques for building fault tolerant

distributed systems. Distributed computing is a field

of computer science that studies distributed systems.

The term distributed system is used to depict a

machine with following characteristics: it consists of

numerous computers that do not contribute to a

memory or clock; the computers communicate with

each other by exchanging messages over a

communication network; and each computer has its

own memory and operating system [9]. The resources

owned and controlled by a system are said to be local

to it, while the resources owned and controlled by

other systems and those that can only be accessed

through the internet are said to be remote or global.

Figure 1: Distributed Computing

http://www.ijesrt.com/

Gehlod,1(10): December, 2012] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [680]

Communication and Execution
The physical structures of distributed systems are,

important communication element in a distributed

system and their execution semantics will be

discussed. It is necessary to know the behaviour of a

distributed system in order to know many of the

schemes for fault tolerance in such systems.

Interprocess Communication

interprocess communication (IPC)is the transfer of

data among processes. For example,a Web browser

may request a Web page from a Web server, which

then sends HTMLdata.This transfer of data usually

uses sockets in a telephone-like connection. In

another example, you may want to print the filenames

in a directory using a command such as ls lpr.

.

Asynchronous Message Passing

A synchronous operation blocks a process till the

operation completes. An asynchronous operation is

non-blocking and only initiates the operation. The

caller could discover completion by some other

mechanism discussed later. (Does it make sense to

have an asynchronous RPC send?) Communication

and synchronization between processes is treated

separately in shared memory. Communication is done

through reading and writing shared variables and for

synchronization access to shared data, different

methods are employed.

Message passing is used for communication and

synchronization where there is no shared memory in

distributed system [6]. Communication is achieved

by a process which sends some data to another

process which receives that data. Synchronization is

achieved, since message passing implies that the

receiving of the message is done after it has been

sent. A message is sent by executing the send

command. A send command is of the form: send

(data, destination), where data is being sent by the

process and destination specifies the process to which

the data is being sent. If the message passing is

asynchronous message passing, then it is assumed

that there is infinite buffer to store messages. In other

words, with asynchronous message passing, senders

can continue to send messages which will be saved in

a buffer for the receiver process to consume [6]. In

this, the sender never blocks, that is, a send command

always succeeds immediately and a sender can be

arbitrarily ahead of the receiver. However, the

receiver process is not non-blocking. It will have to

block if there is no message in the buffer waiting for

it.

Synchronous Message Passing

Synchronous message passing has no buffering. In

this form the execution of a send command is delayed

till the corresponding receives command is executed.

Hence every execution of a communication

command represents a synchronization point where

both the sender and the receiver process synchronize

[6].

The main advantage of synchronous message passing

is that for synchronization at each communication

command it is easier to make assertions about

processes. For example, in the sender process, when

the send command finishes, the sender process can

make some assertions about the state of the receiver

process.

Remote procedure call

To program any type of message based interaction

between processes send/receive primitives are

sufficient. Programs using send/receive primitives

will require a send followed by a “receive” by the

client process and a “receive” followed by a send by

the server process in the client/server type

interactions. In this interaction, the client process is

blocked till the service is complete, even though it

uses asynchronous message passing, since the client

cannot proceed until it receives the result. In RPC

(Remote procedure call), the service to be provided

by the server client process that wants the service

simply makes call to the procedure. The

implementation of the RPC takes care of the

underlying communication. In RPC a client interacts

with the server by means of the call statement, as is

done in a sequential language. A call statement is of

the form: Call service (value_args, result_args),

where service is name of the remote procedure,

value_args are the arguments that provide the

parameter values to the remote procedure, and

result_args are the argument in which the result of the

remote procedure are returned. In this client server

type of interaction after each call to the server by the

client, the state of the server and the state of the client

changes from some initial state to some final state. It

simplifies the task of supporting fault tolerance. In an

RPC two different processes are involved- one

executing the client, the other executing the server- in

this new issues related to fault tolerance arise.

http://www.ijesrt.com/

Gehlod,1(10): December, 2012] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [681]

Under failure condition the semantics of the RPC

cannot be like that of the simple procedure in a

sequential program, in which the failure of a node

means the failure of the caller as well as the callee,

and the failure of the communication network has no

effect.

Fault Tolerance
As already discussed, computing systems consist of a

multitude of hardware and software components that

are bound to fail eventually. In many systems, such

component failures can lead to unanticipated,

potentially disruptive failure and to service

unavailability. Some systems are designed to be

fault-tolerant: they either exhibit well-defined failure

behaviour when components fail or mask component

failures to users, that is, continue to provide their

specified standard service despite the occurrence of

component failures. To many users temporary errant

system failure behaviour or service unavailability is

acceptable. There is, however, a growing number of

user communities for whom the cost of

unpredictable, potentially hazardous failures or

system service unavailability can be very significant

[6]. Examples include the on-line transaction

processing, process control, and computer-based

communications user communities. To minimize

losses due to unpredictable failure behaviour or

service unavailability, these users rely on fault

tolerant system. With the ever increasing dependence

placed on computing services, the number of users

who will demand fault-tolerance is likely to increase

The task of designing and understanding fault-

tolerant system architectures is notoriously difficult:

one has to stay in control of not only the standard

system activities when all components are well, but

also of the complex situations which can occur when

some components fail. The difficulty of this task is

also due to lack of structuring concepts and use of

different names for the same concepts. For example,

what one person calls a failure, a second person calls

a fault, and a third person might call an error.

Faults, Errors, and Failures

The definition of fault tolerance specifies the correct

behaviour that is expected from the system. A failure

occurs when an actual running system deviates from

this specified behaviour. The cause of a failure is

called an error. An error represents an invalid system

state, one that is not allowed by the system behaviour

definition. The error itself is the result of a defect in

the system or fault. In other words, a fault is the root

cause of a failure [6]. That means that an error is

merely the symptom of a fault. A fault may not

necessarily result in an error, but the same fault may

result in multiple errors. Similarly, a single error may

lead to multiple failures.

Faults can be characterized as transient or permanent.

Transient faults are fault of limited duration, caused

by temporary malfunction of the system or due to

some external interference. They can cause a failure,

or an error, only in the duration for which they exist

[6]. These errors caused may also exist only for a

short duration, which makes detecting such faults

very hard and expensive.

Permanent faults are those in which once the

component fails, it never works correctly again.

Many techniques for fault tolerance assume that the

components fail permanently.

Fault Handling Lifecycle

A typical fault handling state transition diagram is as

shown in Figure 4. The assumption made here is that

the system is running with copy-0 as active unit and

copy-1 as standby [10].

When the copy-0 fails, copy-1 will detect the fault by

any of the fault detection mechanisms that are

implemented by the system. At this point, copy-1

takes over from copy-0 and becomes active. The state

of copy-0 is marked suspect and for the time being

diagnostics is pending. The system raises an alarm,

notifying the operator that copy-0 is in stand-by

mode and diagnostics are to be done. Diagnostics are

now scheduled on copy-0. This includes power-on

diagnostics (to check power failure) and hardware

interface diagnostics (to check failure of hardware

components). If the diagnostics on copy-0 pass, copy-

0 is brought in-service as standby unit. If the

diagnostics fail, copy-0 is marked failed and the

operator is notified about the failed card. The

Figure 2: Fault Handling Cycle

http://www.ijesrt.com/

Gehlod,1(10): December, 2012] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [682]

operator replaces the failed card with a new one and

the system diagnoses the new card to assure that it is

healthy. Once the diagnostics pass, copy-0 is marked

standby. The copy-0 now monitors the health of

copy-1 which is currently the active copy. The

operator now restores the original configuration, i.e.

copy-0 becomes active and copy-1 standby.

Phases in Fault Tolerance

In general, the implementation of fault tolerance in

any particular system is closely linked with the

system, its architecture and design. Just like

designing a system is depend on the

properties/requirements of the system, designing a

fault tolerant system is also dependent on the needs

and functionality of the system [8]. Thus, no general

technique can b e proposed for “adding” fault

tolerance to a system. However, some general

principles which are useful in designing fault tolerant

systems have been identified.

The four phases that are general when designing fault

tolerance in a system are:

(1) Error detection

(2) Damage confinement

(3) Error recovery

(4) Fault treatment and continued system

service

1) Error Detection:

The first step to any fault tolerance activity is error

detection. Faults and failures cannot be observed

directly and thus first state of the system is checked

to see if an error has occurred or not, after which

failures and faults can be deduced [6]. Hence, error

detection mechanisms are also referred to as

“failure/fault detection”.

Since error detection is the first and foremost step of

fault tolerance, there are some important properties

that an error detection check should satisfy. Firstly,

the check should never be influenced by the internal

design of the system, it should be determined from

the specifications of the system. Any influence of the

system on the check can cause same error in the

check as is present in the system.

Secondly, an ideal check should be complete and

correct, i.e. the check should be able to detect all

possible errors in the behaviour of the system and

should not detect any error when none is present. If

the check is not complete, then some errors may

remain undetected in the system thereby later causing

failure of the system.

2) Damage Confinement and Assessment:

There is always a time difference between when the

failure occurred and when the error was detected.

This delay can cause the error to spread to other parts

of the system. The goal of this phase is to determine

the boundaries of corruption of the system, before the

error id detected and corrected.

Errors spread when different components of the

system communicate with the faulty component. So,

to determine the amount of damage in the system

after an error has been detected, the flow of

information between the faulty component and other

components is examined [6]. The boundaries are

identified beyond which no information exchange

occurred and it is implied that the damage is limited

to this boundary.

The boundary can be identified dynamically by

recording and examining the information flow that

occurred, but this method is a little complex. Another

way is to statically include firewalls in the design of

the system to ensure that no information flow takes

place outside these walls. Thus, if an error is detected

within this defined area then it can be assumed that it

has not spread beyond the fire walls.

3) Error Recovery:

This is the phase when the error is removed from the

system, after it has been detected and its extent

identified. If the error is not removed, it may cause

failure of the system in future. Thus, in this phase the

system state is made error-free and the system is

restored to a consistent state. There are two general

techniques of error recovery: Backward recovery and

Forward recovery

In Backward recovery, the system state is restored to

an earlier state that is error-free. However, this

requires that the state of the system be periodically

saved on stable storage (check-pointing) that is not

affected by failure. When some error or failure is

detected, the system is rolled back to the last

checkpointed state [6]. Since the failure occurred

after the checkpoint was done, so the checkpointed

state will be error free and thus, after the rollback, the

state of the system will also be error-free.

In Forward recovery, no previous state of the system

is available and thus, the system does not roll back.

Instead, the goal is to go forward and reach a

consistent state, which is error free. This form of

recovery seems very promising in terms of overhead

and efficiency but it requires thorough assessment of

the damage to the state. And the error can be

removed only if exact nature of the error is known,

which requires good diagnosis of the reason of

http://www.ijesrt.com/

Gehlod,1(10): December, 2012] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [683]

failure. The diagnosis has to be system and

application dependent, which makes forward

recovery a system and application dependent

approach. Due to this, it is not as commonly used as

backward recovery.

4) Fault Treatment and Continued Service

In the first three phases, the focus is on errors. The

error is detected, its extent determined and then it is

removed, after which the system becomes error-free.

This works when the error is caused by some

transient fault (exist for a small duration). After error

recovery, the system restarts from an error free state.

But, if the faults are permanent, then the one that

caused the error and failure still remains in the

system and may cause the system to fail again. Thus,

it is required that the faulty component be recognized

and should not be used after error recovery phase.

The goal of this phase is to replace the faulty

component in such a manner that the computation of

the system is not hindered. This phase has two sub

phases Fault location and System repair.

In system repair, the system repaired such that either

the faulty component is not used or used in a

different configuration [7]. One of the simplest and

most commonly used strategies for system repair is

standby spare strategy. In this, there is a standby

component in the system which is used if the main

component fails. The state of the stand by component

is made consistent with the state of the rest of the

system.

Replicationand Checkpointing
Replication

In distributed systems if the data resides on one

single node only then nothing can be done to

successfully complete that action which will need

that data if any kind of failure occurs [1]. Hence if we

want to complete the action which was stopped due

to failure we need to replicate that data. Replication

in simple definition means to make several copies of

that data and keep them on several nodes [3].

Therefore if we replicate the data then if failure on

one node occurs then it will not be inaccessible to the

user. Replication is one of the key concepts in

distributed systems, introduced mainly for increasing

data availability and performance. It consists in

maintaining multiple copies of data items (objects) on

different servers. However, replication introduces

some serious problems like consistency.

Hence the main motivations of replication are to

improve:

1) Performance enhancement: Replication increases

performance with little cost to system. Replication of

changing data of web leads to overheads in the form

of protocols. These protocols ensure that users

receive up to date data. But performance

enhancement using replication has its own

limitations.

2) Increased availability: Users require 100%

availability of the data they want to access with

reasonable response times. Apart from failures other

conflicts do occur when data is not available to user.

Some other factors or conflicts are: Sever Failure,

Process Failure, Network partitions that leads to

communication failure.

3) Fault tolerance: The high availability [13] of data

does not mean that data is correct or the recent

updated data that is it may be out of date. But fault

tolerance service always guarantees that the data is

recent and correct despite of various faults. This is

useful in fields like air traffic control where correct

data is needed on short time scales.

Centralized systems have only one version of every

object, and its state at any time reflects the last write

operation [14] on that object. In a distributed system

the notion of last is not so obvious because of the

lack of a common clock. Every system using

replication must therefore use some kind of

consistency protocol that will arrange communication

between replicating servers

Types of Replication

In the distributed systems replication is mainly used

to provide fault tolerance. Two replication protocols

have been used in distributed

systems: Active and Passive replication [10].

 Figure 4: Active replication

http://www.ijesrt.com/

Gehlod,1(10): December, 2012] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [684]

In active replication each client request is processed

by all the servers. It is also known as state machine

replication [4]. This requires that the process

is deterministic. Deterministic means that, given the

same initial state and a request sequence, all

processes will produce the same response sequence

and end up in the same final state. In order to make

all the servers receive the same sequence of

operations, an atomic broadcast protocol must be

used. An atomic broadcast protocol guarantees that

either all the servers receive a message or none will

receive, and they all will receive messages in the

same sequence. In the above active replication

diagram, C refers to the clients, FE are the front end

nodes and RM be the replica managers. Here the

replica managers are state machines [4] that are

organized as groups. Front ends multicasts their

request to replica managers and all the replica

managers process the request independently and the

reply. When the replica manager crashes there is no

impact on the performance because the remaining

replica managers continue to respond. Active

replication can control byzantine faults because the

front ends can collect the different replies of replica

managers and compare them. The sequence of events

when a client requests an operation to be performed

[15] is as follows:

1) Request: The front end multicasts the

request, containing a unique identifier to the

group of replica managers. It does not issue

another request until each and every replica

manager responds to the request.

2) Coordination: With the help of group

communication the request is delivered to

the replica managers in the order.

3) Execution: Every replica manager executes

the request independently and the response

contains the client’s unique identifier.

4) Agreement: This stage is not there in active

replication since multicast delivery is used.

5) Response: Each replica manager answers to

the front end which then sends the demand

back to the client. The number of replies the

front end collects depends upon the failure

state and the multicast algorithm used.

In passive replication [10] (Primary backup) there is

only one server (primary) that processes client

requests. After processing a request, the primary

server modifies the status on the other backup servers

and drives back the response to the client. If the

primary server fails, one of the backup servers takes

its place. Passive replication may be used even for

non-deterministic processes. The disadvantage of

passive replication compared to active is that in case

of failure the response is delayed. In the above

diagram of passive replication, C refers to the clients,

FE are the front end nodes and RM be the replica

managers. The sequence of events [10] when a client

requests an operation to be performed is as follows:

1) Request: The front end issues the request,

containing a unique identifier to the main

replica manager.

2) Coordination: The primary get each request

one at a time, in the succession in which it

has received the request. It checks the

unique identifier if it has already executed

the request and if it is so it simply resends

the request.

3) Execution: The primary executes the request

and stores the request.

4) Agreement: If the request is update then the

primary sends the updated state, response

and the unique identifier to all the backups.

Then the backups send the

acknowledgement.

5) Response: The primary responds to the front

end which then sends the request back to the

client.

Checkpointing

Fault tolerance techniques enable systems to perform

tasks in the presence of faults. Fault tolerance can be

achieved through some kind of redundancy. The most

common method used is checkpoint-restart [17]; an

application is restarted from an earlier checkpoint or

recovery point after a fault. This may result in the

loss of some processing and applications may not be

able to meet strict timing targets.

Figure 5: Passive replication

Checkpointing is mainly used to avoid losing all the

useful processing done before a fault has occurred

http://www.ijesrt.com/
http://doi.acm.org/10.1145/1041680.1041682

Gehlod,1(10): December, 2012] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [685]

[11]. Checkpointing consists of intermittently saving

the state of a program in a reliable storage medium.

Upon detection of a fault, previous consistent state is

restored. In case of a fault, checkpointing enables the

execution of a program to be resumed from a

previous consistent state rather than resuming the

execution from the beginning. In this way, the

amount of useful processing lost because of the fault

is significantly reduced.

Types of checkpointing

Depending on the programmer’s intervention in

process of checkpointing, it can be classified as

follows:

1) User triggered checkpointing: These

checkpointing schemes [18] need user

interaction. These are usually employed

where the user has the knowledge of the

computation being performed and can

decide the location of the checkpoints. The

major difficulty is the identification of the

checkpoint location by a user. This approach

is well suited for long-running, computation-

intensive parallel applications, because of

the minimal fault-free overhead. Indeed,

there is no overhead through the normal

execution of the application between the

moments that the checkpoints are taken.

2) Uncoordinated Checkpointing: In

uncoordinated or independent checkpointing

[16], processes do not coordinate their

checkpointing activity and each process

records its local checkpoint independently.

In this way, each process becomes

independent in deciding when to take

checkpoint, i.e., each process may take a

checkpoint when it is most convenient. It

eliminates coordination overhead all

together and forms a consistent global state

on recovery after a fault. After a failure, a

consistent global checkpoint is established

by tracking the dependencies [11]. It may

require cascaded rollbacks that may lead to

the initial state due to domino-effect, i.e. the

processes may resume from the beginning. It

requires multiple checkpoints to be saved for

each process and periodically invokes

garbage collection algorithm to reclaim the

checkpoints that are no longer needed. In

this scheme, a process may take a useless

checkpoint that will never be a part of global

consistent state. Useless checkpoints incur

overhead without advancing the recovery

line.

3) Coordinated Checkpointing: In coordinated

[16] or synchronous checkpointing,

processes take checkpoints in such a manner

that the resulting global state is consistent.

Mostly it follows two-phase commit

structure. In the first phase, processes take

tentative checkpoints and in the second

phase, these are made permanent. The main

advantage is that only one permanent

checkpoint and at most one tentative

checkpoint is required to be stored. In case

of a fault, processes rollback to last

checkpointed state. A permanent checkpoint

cannot be undone. It guarantees that the

computation needed to reach the

checkpointed state will not be repeated [11].

A tentative checkpoint, however, can be

undone or changed to be a permanent

checkpoint.

4) Message Logging based checkpointing:

Message-logging protocols [18] are popular

for building systems that can tolerate

process crash failures. Message logging and

checkpointing can be used to provide fault

tolerance in distributed systems in which all

inter-process communication is through

messages. Each message received by a

process is saved in message log on stable

storage. No coordination is required between

the checkpointing of different processes or

between message logging and

checkpointing. When a process crashes, a

new process is created in its place [11]. The

new process [12] is given the appropriate

recorded local state, and then the logged

messages are replayed in the order the

process originally received them. All

message logging protocols require that once

a crashed process recovers, its state needs to

be consistent with the states of the other

processes.

Outcome
A systematic investigation is carried out:

1) To find pros and cons of different fault

tolerance techniques in distributed system.

2) To address the consistency issue in

replication based fault tolerance technique.

3) To explore the way to reduce the overhead

of check-pointing technique.

Another important issue relating to a checkpointing

server is the overhead of time delay while retrieval of

checkpoints. When an independent process crashes, it

has to retrieve only its own last consistent state. But

http://www.ijesrt.com/

Gehlod,1(10): December, 2012] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [686]

in case of a process, which is communicating with

several other processes, is crashed the retrieval has to

be done for several processes. This results in time

delay at server, since it has to process several

requests at the same time. To resolve this issue, the

states have been saved at all the replicas of the node

where the process is running. The solution of both

these issues is combined to create a consistent

multiple fault tolerant system.

Conclusion
We have projected an enhanced method to ensure the

consistency by simulating the distributed

environment using java RMI. This work reveals to

lock leased protocol for write-write or read-write

process. Concurrent read operations can be

performed simultaneously. This algorithm is very

simple and ensures the consistency in a very simple

manner. Checkpointing overhead is reduced by

saving the checkpoints on local hard disk instead of

SNA (Storage Network Area) or DFS (Distributed

File System) following the assumptions given by

John Paul Walters. John Paul Walters only addressed

replication placement but he has not addressed

consistency issue of replica management.

This work is one step ahead as a control frame is

suggested that is work as a coordinator for interactive

consistency model of checkpointing replication.

Several fault capability is managed by this controller

although it is a single point failure due to master

controller but in future (as future work) controller can

be replicated to protect from single point failure. This

work will absolutely work as a reference for

researcher and practitioner to design and develop

high performance multiple fault tolerance.

References
1. Data Replication strategies in wide area

Distributed Systems. Sushant Goel, Grid

Computing and Distributed Systems

(GRIDS) LaboratoryDepartment of

Computer Science and Software

Engineering, The University of Melbourne,

Australia.

2. A Concept of Replicated Remote Method

Invocation Jerzy Brzezinski and Cezary

Sobaniec, Institute of Computing Science,

Poznan University of Technology, Poland

{Jerzy.Brzezinski,

Cezary.Sobaniec}@cs.put.poznan.pl

3. Replication-Based Fault Tolerance for MPI

Applications John Paul Walters and Vipin

Chaudhary, Member, IEEE

4. A Fusion-based Approach for Tolerating

Faults in Finite State Machines Vinit Ogale ,

Bharath Balasubramanian and Vijay K.

Garg Parallel and Distributed Systems

Laboratory, Dept. of Electrical and

Computer Engineering, The University of

Texas at Austin. IBM India Research Lab

(IRL),Delhi, India.

5. Protocols for maintaining consistency of

replicated data Ricardo Anid and N.C.

Mendonca.

6. Jalote, P. Fault Tolerance in Distributed

Systems, (Prentice Hall, 1994).

7. http://www.ibm.com/developerworks/ration

al/library/114.ht ml.

8. A survey on fault-tolerance in Distributed

Network systems.Naixue Xiong, College of

Computer Science, Wuhan Univ. of Science

and Engg,, China Yan Yang, Center of

Asian and Pacific Studies, Seikei Univ.,

Tokyo, Japan.

9. http://en.wikipedia.org/wiki/Distributed_co

mputing.

10. http://www.eventhelix.com/faulthandling/fa

ulthandlingtechn iques.

11. Checkpointing Based Fault Tolerance in

Mobile Distributed Systems Parveen

Kumar1, Rachit Garg.

12. G. Burns, R. Daoud, and J. Vaigl, “LAM:

An Open Cluster Environment for MPI,”

Proc. Supercomputing Symp., pp. 379-

386,1994.

13. Rachid Guerraoi, and André Schiper,

"Software-based replication for fault

tolerance," Journal of the ACM, Vol. 30,

issue 4, April 1997.

14. Halpern, J. and Y. Moses, "Knowledge and

Common Knowledge in a Distributed

Environment," Proc. of the 3rd ACM

Symposium on Principles of Distributed

Systems, 1984, pp. 50-61 and Lamport, L.,

R. Shostak, and M. Pease, "The Byzantine

Generals Problem," ACM Transactions on

Programming Languages and Systems, Vol.

4 No. 3, July 1982, pp. 382-401.

15. Andrews, Gregory R. (2000), Foundations

of Multithreaded, Parallel, and Distributed

Programming, Addison–Wesley, ISBN 0-

201-35752-6.

16. Guohong Cao and Mukesh Singhal , “On

Coordinated Checkpointing in Distributed

Systems”, IEEE Transactions on Parallel

and Distributed Systems, Vol. 9, No. 12,

December 1998.

17. Mohamed-Slim Bouguerra, Thierry Gautier,

http://www.ijesrt.com/
mailto:Cezary.Sobaniec%7D@cs.put.poznan.pl
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Distributed_computing

Gehlod,1(10): December, 2012] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [687]

Denis Trystram, and Jean Marc Vincent, “A

Flexible Checkpoint/Restart Model in

Distributed Systems”, Springer-Verlag

Berlin Heidelberg 2010, R. Wyrzykowski et

al. (Eds.): PPAM 2009, Part I, LNCS 6067,

pp. 206–215, 2010

Author Bibliography

Lalit Gehlod

Author has been

working as a lecturer in

computer engineering

department at

IET,DAVV

http://www.ijesrt.com/

